2017 SCSU MATH CONTEST 9th and 10th Grade Test – 50th Annual Edition

DIRECTIONS: Select the BEST response from those given. Scientific and graphing calculators are allowed. Symbolic graphing calculators are not allowed.

1.	This is the 50 th annual A. 0	SCS B.	U Math Contest. 1	in hoi C.	nor of this, find the 3	e one D.	es digit of 2017 ⁵⁰ . 7	E.	9	
2.	At Perry's Parers, each	n par	er pares a pair of	pear	s every 6 minutes.	Hov	v many pears do a	pair	of triplets pare	
	A. 60	В.	120	C.	160	D.	240	E.	480	
3.	Assume $x > 0$ and $y > 0$ A. Always positive). Т В.	hen $\sqrt{x} + \sqrt{y} - \sqrt{z}$ Sometimes zero	x + y C.	is: Sometimes negative	D.	Sometimes Undefined	E.	Impossible to determine	
4.	Consider the page nur The sum of these eigh A. 612	nbei t pai B.	rs on eight consec ge numbers could 780	utive NOT C.	pages of a book. be: 864	D.	932	E.	1148	
5.	Jake has only nickels, quarters, and he has 7 pocket?	dime ' few	es, and quarters in ver nickels than di	his p mes.	oocket. The value of these	of th e coi	e dimes is the sam ns is \$5.90. How n	e as nany	the value of the coins are in Jake's	
	A. 18	В.	25	C.	28	D.	31	E.	53	
6.	The first SCSU Math C through 2017 (includi	onte ng 2(est was held in 196 017).	58. Ir	honor of this, find	d the	sum of the odd in	tege	rs from 1968	
	A. 47,818	В.	49,800	C.	49,825	D.	51,792	E.	51,817	
7.	7. Three automated machines are used to make a product. The two newer machines are each faster than the old machine. Each new machine produces two less than twice the number of units per hour that the old machine produces. All three machines work 7.5 hours per day for 5 days and produce 1725 units. How many units per hour does the old machine produce?									
	A. 10	В.	12	C.	15	D.	18	E.	Impossible to determine	
8.	Let $f(n) = n \div [(n-1) \div$	[(n-	$-2)\div \left[\cdots \left(3\div \left(2\div 1\right)\right)\right]$.))]]	for <i>n</i> = 2, 3, 4,	Wł	nich of the followin	g is t	rue?	
	A. $f(7) = 1$	В.	$f(7) = \frac{7 \cdot 5 \cdot 3}{6 \cdot 4 \cdot 2}$	С.	$f(7) = \frac{6 \cdot 4 \cdot 2}{7 \cdot 5 \cdot 3}$	D.	$f(7) = 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot$	2 6	E. None of these	

- 9. Millie was born 1 million seconds after the start of 2017. If New Year's Day 2017 was Sunday, on what day of the week was Millie born?
 - A. Wednesday B. Thursday C. Friday D. Saturday E. Sunday

10.	Let <i>a</i> and <i>b</i> be positive	e real	numbers with <i>a</i> +	b=4	4. What is the min	imur	m value of $\left(1+\frac{1}{a}\right)$	$1+\frac{1}{a}\left(1+\frac{1}{b}\right)?$				
	A. 2	В.	$\frac{8}{3}$	C.	$\frac{9}{4}$	D.	3	E.	4			
11.	The lengths of the sid Compute the smallest	es of pose	a right triangle are ible value for the	e all i lengt	ntegers. Two of th h of the third side	nese	integers are prime	es th	at differ by 50.			
	A. 51	В.	53	C.	56	D.	60	Ε.	61			
12.	 Four suspects of a crime made the following statements to the police. Anil: Cora stole the \$50. Berta: I did not steal the \$50. Cora: Dan stole the \$50. Dan: Cora lied when she said that I stole the \$50. Given that one of them "did it" and that exactly one of them told the truth, who stole the \$50? A. Anil B. Berta C. Cora Dan E. Impossible to determine 											
13.	To celebrate the 50 th 50% of the time she wyesterday to meet here	annua valke r goa	al SCSU Math Con d yesterday. What I?	test, perc	Jen wants to walk cent <u>increase</u> in sp	50% eed v	farther today tha will she need toda	n yes y as	sterday in only compared to			

1 1	0							
A. 20%	В.	50%	C.	200%	D.	300%	Ε.	500%

Use the three figures below to answer questions 14, 15, and 16.

15. The six numbers on the faces of our cube, above center, are consecutive even numbers. The sums of the two numbers on each pair of opposite faces are equal. A portion of our cube can be seen in the diagram. What is the number on the face opposite 22?
A. 18
B. 20
C. 24
D. 30
E. 32

16. Eight identical sheets of paper were placed on the table one at a time, overlapping as shown in the diagram, above right. Which sheet(s) of paper could have been the fifth one placed on the table?
A. Only A
B. Only D
C. Only E
D. Only D or E
E. Only E or H

17.	For	what positive real	num	wher <i>n</i> are $\frac{6+4\sqrt{n}}{n}$	and	$\frac{6-4\sqrt{n}}{n}$ reciproca	als?			
	A.	2	В.	$4 + 4\sqrt{3}$	C.	12	D.	16	E.	18
18.	Let	x be a solution of	4 ^x –	$4^{x-1} = 24$. Find (2.	$(x)^{x}$.					
	Α.	√5	В.	5√5	C.	25	D.	25√5	E.	125
19.	The	perimeter of a rh	omb	us is 60 units. One	e dia	gonal is 24 units lo	ng. F	Find the length of t	the c	other diagonal.
	Α.	9 units	В.	12 units	C.	18 units	D.	24 units	Ε.	None of these
20.	Two oth end	o fair dice are rolle erwise. A player r l of these two rolls	ed. A olls t ;?	player gets two po hese two dice twic	oints ce. V	if both faces shov Vhat is the probab	v diff ility t	erent prime numb hat she has a scor	ers, e of	and zero points two points at the
	Α.	<u>5</u> 18	В.	<u>5</u> 36	C.	$\frac{1}{2}$	D.	$\frac{2}{3}$	E.	$\frac{1}{9}$
		10		50		2		5		5
21.	Hov	v many different v	vays	are there to get to	the	top of a nine-step	stair	way if you take eit	her	one step or two
	A.	34	В.	54	C.	89	D.	144	E.	None of these
22.	The Finc A.	sum of the digits I the sum of the d 72	of 66 igits B.	6 ² is 27. of 666,666,666,66 84	6 ² . C.	86	D.	108	E.	120
23.	Find	the point on the	v-axi	s that is equidistar	nt fro	om the points (2.1) an	d (43).		
201	A.	$\left(0,-\frac{5}{2}\right)$	в.	(0,-2)	C.	(-2,0)	D.	(3,-1)	E.	(0,-1)
24.	lf x	$y = a$ and $\frac{1}{x^2} + \frac{1}{y^2}$	=b,	then find $(x+y)^2$.						
	A.	$(2a+b)^2$	В.	a^2+b^2	C.	a(ab+2)	D.	ab(b+2)	E.	$2a+\frac{1}{b}$
25.	Con whi	sider a binary ope ch of the following	eratic g is ti	on * defined by <i>a</i> * rue?	b=0	a ^b . For all positive	inte	gers <i>a, b,</i> and <i>c</i> ,		
	A.	$a * b^c = (a * c) * b$	В.	a*(b*c)=(a*b)	*С	C. <i>a</i> * <i>b</i> = <i>b</i> * <i>a</i>	D.	$(a*b)^c = a*(bc)$	E.	None of these
26.	An (Find	equilateral triangle I the area of the h	e and exag	l a regular hexagor on in square units.	n hav	ve equal perimeter	rs. Tł	ne area of the triar	ngle	is 2 square units.
	Α.	3	В.	4	C.	6	D.	8	E.	12
27.	Let	x > 0 and $b > 0$.	Whic	h of the following i	is an	equivalent expres	sion	for $\log_b 2 + \log_b x$ -	-log	b(x+3)?

A.
$$\log_b 2 - \log_b 3$$
 B. $\log_b \left(\frac{2x}{x+3}\right)$ C. $\log_b \left(\frac{3}{2}\right)$ D. $\log_b \left(\frac{2+x}{3x}\right)$ E. $\frac{\log_b (2x)}{\log_b (x+3)}$

Use the three figures below to answer questions 28, 29 and 30.

28. The first six rows of a triangular array of odd numbers is shown, above left.										
What will be the sum of the first number and the last number in row 17?										
	Α.	572	В.	578	C.	582	D.	594	Ε.	598

- 29. In a circle with center *O*, *OA* and *OB* are radii and ∠AOB is a right angle, as shown above center. A semicircle is constructed using segment AB as its diameter as shown. The shaded portion of the semicircle outside circle *O* is called a *lune*. What is the ratio of the area of the *lune* to the area of the triangle?
 - A. $\sqrt{2}:\pi$ B. 1:1 C. $\frac{\pi}{\sqrt{3}}:1$ D. $\pi:\sqrt{2}$ E. $\frac{\pi}{3}:1$
- 30. In the figure shown, above right, the radius of the circle is OC = 1 and $\overline{OB} \perp \overline{AC}$. Express the area of $\triangle ABC$ as a function of x, where OD = x.
 - A. $A(x) = (1-x)\sqrt{1-x^2}$ B. $A(x) = \frac{1}{2}x(1-x)$ C. $A(x) = \frac{1}{2}\sqrt{1-x^2}$ D. $A(x) = \frac{1}{2}$ E. None of these
- 31. Let $f(x) = x^2 + x 6$. For what values of t does f(t-5) = 0? A. -3 and 2 B. -2 and 3 C. 5 D. 2 and 7 E. None of these
- 32. Find the remainder when $x^{50} + 50$ is divided by x + 1.A. 0B. 1C. 49D. 50E. 51

33. In a triangle $\triangle ABC$, AC = 6 and BC = 7. Suppose the median from vertex A is perpendicular to the median from vertex B. Find AB.

A. 4 B. $\sqrt{17}$ C. $2\sqrt{5}$ D. 5 E. $\sqrt{85}$

34. Let A(-1,-2) and B(7,14) be points in the plane. Find an equation of the perpendicular bisector of line segment \overline{AB} . A. 2x+y=15 B. x+2y=15 C. -2x+y=0 D. -x+2y=3 E. 2x-y=3