2018 SCSU MATH CONTEST 11th and 12th Grade Test

DIRECTIONS: Select the BEST response from those given. Scientific and graphing calculators are allowed. Symbolic graphing calculators are not allowed.

1.	Find	d the remainder wl	hen	4 ²⁰¹⁸ is divided by	7.					
	Α.	0	Β.	1	C.	2	D.	3	Ε.	4
2.	A cł	nord of length 2 in	the o	circle $x^2 + y^2 - 2x$	-2y=	=-1 has one endp	oint a	at(2,1). Find the	coor	dinates of the
	oth	er endpoint.								
	A.	(0,1)	B.	(1,-√3)	C.	(2,3)	D.	(4,-1)	E.	$\left(4,\sqrt{2}\right)$
		、 ,						、		
3.	The	variable <i>n</i> represe	ents t	he smallest positiv	ve in	teger such that $\sqrt{1}$	050n	is a whole numbe	er. F	ind the sum of
	the	digits of <i>n</i> .								
	Α.	6	Β.	8	C.	12	D.	13	Ε.	15
4.	A m	ath class has 28 st	uder	nts, and the ratio o	fbo	ys to girls is 3:4. If	the I	number of boys rei	mair	is the same, how
	mar	ny girls must join tl	he cla	ass to make the ra	tio o	f boys to girls 3:5?	-	10	-	10
	А.	2	В.	4	C.	/	D.	10	E.	12
_	The					- :				
5.	ine	sequence 6, a, b, a	c,144	106,, is geometi	ric. i	Find the mean of a	, <i>b</i> , a	nd <i>C</i> .	г	7206
	А.	798	в.	2891	C.	4800	D.	5187	E.	7206
6.	The	height of a stone	throw	wn from a cliff is gi	ven	by $h(t) = -16t^2 + 0$	58t +	50, where height	h is	measured in feet
	and	time <i>t</i> in seconds.	Fine	d the average velo	city o	of the stone from t	=2	to $t = 2.5$, in feet p	er se	econd.
	А.	-4	В.	-2	C.	0	D.	2	E.	4
_								с I	c	
7.	A re	egular octagon is fo	orme are is	d by cutting congr	uent - Ieg	s of each isosceles right tria	ngle triar	s from each corne	r of a	a square. If the
	Sluc	$2 - \sqrt{2}$		$2 - \sqrt{2}$		$1 \pm \sqrt{2}$	that	$1+\sqrt{2}$	unn	$2 \pm \sqrt{2}$
	Α.	$\frac{z-\sqrt{z}}{3}$	В.	$\frac{2-\sqrt{2}}{2}$	C.	$\frac{1+\sqrt{2}}{3}$	D.	$\frac{1+\sqrt{2}}{2}$	Ε.	$\frac{2+\sqrt{2}}{3}$
		5		-		J		-		5
8.	The	sum of the digits of	of a s	even-digit positive	e inte	eger is 3. How mai	ny su	ch positive integer	's ex	ist?
	Α.	15	Β.	16	C.	22	D.	28	Ε.	33
9.	Ар	oint is randomly se	lecte	ed from within a tr	iang	le having vertices	(-3,-	–7),(–3,8), and (12,1	2). Find the
	pro	bability that the <i>y</i> -	coor	dinate of the point	is g	reater than the <i>x</i> -c	coord	linate.		
	Α.	3	В.	7	C.	4	D.	7	Ε.	<u>11</u>
		4		8		9		12		15
10.	Find	d the value of the f	ollov	ving sum: $\cos 0^{\circ} +$	cos 1	$1^{\circ} + \cos 2^{\circ} + \cos 3^{\circ} +$	+	$\cos 360^{\circ}$.		
			_	-	_	π	_		_	-
	Α.	0	В.	1	C.	2	D.	π	E.	2π

Use the diagrams below to answer questions 11, 12 and 13.

20.	If Q	quarts of motor of	oil co	st a total of C cent	s, ho	w many gallons o	of this	oil can you buy for	r <i>D</i> d	ollars?
	A.	<u>DQ</u> 25C	В.	$\frac{4DQ}{C}$	C.	<u>DQ</u> 400C	D.	$\frac{DQ}{4C}$ E		C
21.	A re the	egular hexagon is i circle?	inscri	bed in a circle. Th	e are	ea of the hexagor	n is ap	proximately what	perc	ent of the area of
	A.	78.3	В.	80.1	C.	82.7	D.	83.3	E.	85.7
22.	Finc A.	d the sum of the a 206,403	rithn B.	netic series 3+7+ 207,046	11+ C.	+1283. 412,806	D.	414,092	E.	415,378
•	6			10^{x+1} $2^{2}(10^{x+1})$	×)	10 ^x (
23.	larg	est.	pres	sions 2^{-2} , 3^{\times}	⁄ aı	nd 10 for x≥0	0.0	rder the expression	is tro	om smallest to
	A.	$2^{10^{x+1}}, 3^{2(10^x)}, 1$	0 ^{10^x}	B. $3^{2(10^x)}$), 10	$10^{10^{x}}$, $2^{10^{x+1}}$	C.	10 ^{10^x} , 2 ^{10^{x+1}} , 3 ²	(10 ^x)	
	D.	$3^{2(10^{*})}, 2^{10^{x+1}}, 2^{10^{x+1}}, 2^{10^{x+1}}$	10 ^{10^x}	E. 2 ^{10^{x+1}}	, 10	10^{x} , $3^{2(10^{*})}$				
24.	Sup valu	pose that the <i>n</i> th ie of <i>P</i> 1000.	term	n of a sequence is g	giver	h by $P_n = 3.2P_{n-1}$ (1- <i>P</i> _{<i>n</i>-}	P_{-1}). If $P_0 = 0.4$, fir	nd th	e approximate
	A.	0	В.	0.513	C.	0.522	D.	0.768	E.	0.799
25.	A pi The	le of nickels, dime	es, ar ins is	nd quarters has twi less than \$20 Wi	ice a hat i	s many quarters	as nic umbe	kels and twice as m	nany Id be	dimes as quarters.
	A.	126	В.	147	C.	183	D.	205	Ε.	239
26.	We	are given that k is	s a re	al number and tha	it the	e sum of 3k and	$\frac{10}{k}$ is	the cube of <i>k</i> .Find	the	value of the
	squ A.	are of <i>k</i> . -7	В.	-3	C.	2	D.	5	E.	13
27.	Α cι	ube has a surface	area	of 64 square units	. Fin	d the surface are	ea of t	he largest sphere t	hat f	its inside the
	larg	est cylinder that f 32π	its in	side the cube, in s	quar	e units. 64 π	_		_	128π
	Α.	3	В.	16π	C.	9	D.	64 <i>π</i>	E.	3
28.	Find	d the value of y wl	nen s	olving the system	of re	al-valued equation	ons:	$x\sqrt{5} + y\sqrt{7} = x\sqrt{7} - y\sqrt{5} =$	2 6	
	A.	$\frac{\sqrt{5}}{6} + \frac{\sqrt{7}}{2}$	В.	$3\sqrt{7}-\sqrt{5}$	C.	$\sqrt{7} + 3\sqrt{5}$	D.	3\sqrt{5}-\sqrt{7}	E.	$\frac{\sqrt{7}}{6} - \frac{\sqrt{5}}{2}$

29. What is the measure of the acute angle formed by the hour and minute hands of a clock that reads 2:15?

A.	5 °	B. 7.5°	C. 22.5°	D. 28°	Ε.	30°
----	------------	---------	----------	--------	----	-----

Use the diagrams below to answer questions 30 and 31.

32. A parking lot has 16 spaces in a row. Twelve cars arrive, each of which requires one parking space, and their drivers choose their spaces at random from among the available spaces. Andy then arrives in his truck, which requires 2 adjacent spaces. Find the probability that Andy is able to park his truck in this parking lot.

A.	1	B. <u>1</u>	C. <u>15</u>	D. <u>3</u>	E. <u>17</u>
	8	4	32	4	28

C. 1

33. Find the sum of the series $\frac{1}{\log_2(2018!)} + \frac{1}{\log_3(2018!)} + \frac{1}{\log_4(2018!)} + \dots + \frac{1}{\log_{2018}(2018!)}$

Α. 1 2018

Α.

34. On a trick six-sided die, the probability of rolling a specific value is given in the table at the right. The trick die and a standard fair die are each rolled once. Find the probability that the sum of the roll values is a multiple of 3.

TRICK SIX-SIDED DIE								
Roll Value	1	2	3	4	5	6		
Probability	5 24	$\frac{1}{6}$	$\frac{1}{8}$	$\frac{1}{8}$	<u>5</u> 24	$\frac{1}{6}$		
D. $\frac{11}{36}$ E. $\frac{35}{144}$								

E. 2018

B. $\frac{5}{12}$ C. $\frac{19}{72}$ Α.

Β. 1 2

35.	5. Ayden, Ellery, Leyton, Bennett, and Catherine are all different ages. Exactly one of	the following five
	statements is true.	

- Ayden is the oldest.
- Bennett is older than Leyton.
- Catherine is older than Ellery.
- Leyton is not the youngest.
- Ellery is not the oldest.

Who is the oldest?

Ayden B. Ellery Α.

C. Leyton

D. Bennett

D. 2