
(0, 1)-Matrix-Vector Products via Compression by
Induction of Hierarchical Grammars

Aaron Webb
Computer Science Department

St. Cloud State University
St. Cloud, MN 56301

aaronmwebb@gmail.com

Andrew A. Anda
Computer Science Department

St. Cloud State University
St. Cloud, MN 56301

aanda@stcloudstate.edu

Abstract

We demonstrate a method for reducing the number of arithmetic operations within a (0, 1)-
matrix vector product. We employ an algorithm, SEQUITUR, developed for lossless text
compression, which generates a context free grammar derived from an inherent hierarchy
of repeated sequences. In this context, the sequences are composed of bit patterns for a set
of adjacent columns. This grammar will represent the original matrix as a hierarchical set of
rules identifying and exploiting structural redundancies. It is then sufficient to compute the
inner product value of that pattern only once. When that pattern reappears in a different row,
that inner product value is reloaded rather than recomputed, thus obviating computations
for each repetition.

Aaron Webb and Andrew A. Anda
Computer Science Department

St. Cloud State University
St. Cloud, MN 56301

aaronmwebb@gmail.com
aanda@stcloudstate.edu

1 Introduction

A (0, 1)-matrix (also identified as zero-one or Boolean) is a rectangular matrix for which
each element of the matrix has the value of either one or zero. (0, 1)-matrices arise from
problems in a variety of application areas. See [1] for a brief survey.
In fact, any general matrix may be decomposed into the linear combination of conformal
(0,1)-matrices. For a general real matrix A ∈ R

m×n,

A =
m

∑

i=1

n
∑

j=1

αijEij,
{

Eij = eie
T
j , 1 ≤ i ≤ m; 1 ≤ j ≤ m

}

, (1)

where αij is an element of A, ei is the ith unit vector, and Eij is a resultant (0, 1)-matrix
having only one nonzero element. E.g.,

(

a b
c d

)

= a

(

1 0
0 0

)

+ b

(

0 1
0 0

)

+ c

(

0 0
1 0

)

+ d

(

0 0
0 1

)

.

The matrix-vector product operation,

Ax = y, (2)

represents the product of a matrix, A ∈ {0, 1}m×n, by the vector, x ∈ R
n, yielding the

vector, y ∈ R
m. More generally, the vectors may actually be over any algebraic ring for

which addition and multiplication is closed and well defined.
The general matrix-vector product is an example of level 2 BLAS (Basic Linear Algebra
Subroutines) operation, and as such, it exhibits a quadratic complexity. (i.e., a doubly
nested loop is required for its evaluation). There is little that can be done to improve the
complexity of the general matrix-vector product (unlike the general matrix-matrix product
which can be performed in O(nω), where 2 < ω < 3. E.g. Strassen’s method, where
ω = lg 7 ≈ 2.807). The set of operations may be blocked promoting data locality for
modest performance gains for large matrices on a hierarchical memory architecture. But,
we know of no way to reduce the number of scalar additions and multiplications. For
certain classes of structured matrices, however, we can attain O(n lnn) by applying the
FFT (Fast Fourier Transform) to the calculation. A structured matrix is one which can be
fully characterized by O(n) parameters. In fact the product of a rank one matrix and a
vector can be performed in O(n) if we know the two vectors that any rank-one matrix can
be decomposed into, Ax = yzT x for some vectors y and z. Nonetheless, we will restrict
our consideration to only general (0, 1)-matrices.

1.1 A Differencing Method

The general Matrix-vector product Ax = y, A ∈ R
m×n, x ∈ R

n, and y ∈ R
m, is computed

with the following equation,

yi =

n
∑

j=1

αijxj, 1 ≤ i ≤ m. (3)

1

Computing this requires an algorithm having a doubly nested loop having one of two pos-
sible orderings. We’ll consider the ordering which performs an inner product in the inner
loop (rather than a sum of outer products), so that each outer loop completely calculates
one element of the resultant vector y. With either ordering, there are m(n−1) additions and
mn multiplications. For a (0, 1)-matrix though, αij ∈ {0, 1}, ∀i, j. So, either the product
αijxj contributes to the sum as xj , in the case of αij = 1 , or it is skipped, in the case of
αij = 0. This implies that the maximum possible amount of work is mn additions which
would occur if the matrix were all ones.
Now, lets consider computing the difference between two elements of y, yi and yk:

yk − yi =
n

∑

j=1

αkjxj −
n

∑

j=1

αijxj (4)

=

n
∑

j=1

(αkjxj − αijxj) (5)

=
n

∑

j=1

xj (αkj − αij) (6)

Now lets consider computing yk if yi has already been computed.

yk = yi +

n
∑

j=1

xj (αkj − αij) (7)

= yi +
n

∑

j=1

xj (dj) , dj = αkj − αij (8)

This implies that apart from the first element of y to be computed, each subsequent element
of y can be computed as the sum of a previously computed element with the inner product
of x with the difference vector of the two rows of A, d. Let Ak be the kth row of A. Then
we have saved ‖Ak‖1 − ‖d‖1 − 1 operations in computing yk. If ‖d‖1 + 1 < ‖Ak‖1, the
savings is positive. (the offset of 1 is due to the addition of yi) ‖d‖1 is also the Hamming
distance between two rows of A. E.g. consider a triangular (0, 1)-matrix-vector product,

1 0 0 0
1 1 0 0
1 1 1 0
1 1 1 1

a
b
c
d

=

y0

y1

y2

y3

=

a
a + b
a + b + c
a + b + c + d

=

y0 = a
y1 = y0 + b
y2 = y1 + c
y3 = y2 + d

.

We can see that in the above example we have halved the number of additions. And, more
generally, for a triangular (0, 1)-matrix-vector product of size n, the number of additions is
reduced from n(n − 1)/2 to (n − 1) via the differencing method.
We can deal with any duplicated rows in A by loading its previously computed value at the
expense of no additions.
If the remaining rows are unique, what’s the lowest number of additions that we need?
Because there are no duplicated rows, there must be a Hamming distance of at least one

2

between each row of A and each other row. The optimum in this case would be for there
to be, for every row of A, some other row of A of unit Hamming distance. A sequence of
Boolean vectors which satisfies this condition is a Gray code. See [1] for the description
of a related algorithm which applies Gray codes to more efficiently perform (0, 1)-matrix-
vector products.

1.2 SEQUITUR and Hierarchical Structure Identification

In 1994, Nevill-Manning, Witten, and Maulsby [9] introduced an adaptive lossless com-
pression method which develops a model of a given symbol sequence by identifying re-
peated sequences hierarchically, representing them as a set of rules forming a context free
grammar. Nevill-Manning and Witten [4, 6] further developed this method into an algo-
rithm, labeled SEQUITUR, that operates incrementally in linear-time. (For further devel-
opments, analyses, and applications of SEQUITUR by its creators, see [2, 5, 3, 7, 8, 10])
The SEQUITUR algorithm is surprisingly simple in its implementation. A hierarchical
grammar is created as a linked list of grammar rules and symbols. It can be generated
purely by adhering to two constraints while scanning through an input text stream, namely
digram uniqueness and rule utility. Digram uniqueness is responsible for the creation of
new rules, while rule utility absorbs rules which are unnecessary.
Digram uniqueness ensures that no two character sequence, or digram, may appear more
than once in the grammar. This constraint is maintained by means of a hash table con-
taining of all digrams used in the grammar. Should any previously encountered digram be
introduced into the grammar, a new rule is generated and all occurrences of the digram will
be replaced with a link to the new rule.
Rule utility ensures that every non-root production is used at least twice. This constraint is
maintained quite simply through the use of a counter in every rule object. When a rule is
used or disused, its counter is incremented or decremented. Should a rule’s usage counter
be reduced to one, the rule will be expanded within its parent production and be removed.

1.3 Applying SEQUITUR to (0, 1)-Matrix Vector Product Computation

In order to use the SEQUITUR algorithm for matrix-vector products, two new constraints
must be introduced. Patterns must only be detected within individual columns, and patterns
must not be matched across row boundaries. SEQUITUR is designed to work on single line
text streams where the pattern does not rely on positional data, and lacks the facilities to
find patterns which are position dependent as in this usage. Since the patterns required for
the optimization lie in the column layout, the column information must be encoded within
the data. This is accomplished simply by concatenating a column number with the boolean
matrix element datum before grammar generation. Likewise, SEQUITUR will find patterns
that span multiple rows, which are irrelevant for this process. To prevent this, unique sentry
characters are injected after each row entry. Being unique, these characters ensure that no
patterns will be able to include them. As such, they will only be found within the root-
production of the grammar. Since both of these constraints are handled by preprocessing

3

the matrices before grammar generation, the SEQUITUR algorithm requires no changes in
order to produce the necessary grammar.
Once the grammar is produced, the matrix-vector multiplication is accomplished simply
by tracing through each of the rules and performing the multiplication on each production
segment. Since each rule is tied to a corresponding vector substring, it need only be calcu-
lated once. Thus by traversing the grammar tree, entire branches are ”pruned” once their
values are calculated elsewhere in the tree. This effect is further enhanced when consid-
ering that the hierarchy generation occurs independently of the vector, so that any further
multiplications involving the original matrix will be able to profit from this process.
SEQUITUR was shown by its developers to have linear time complexity with respect to
the size of the input. For our application, that is O(mn). The dynamic space requirements
of SEQUITUR grow linearly as well, which proves problematical for significantly long
strings. For this reason, Nevill-Manning and Witten suggest two techniques for augmenting
SEQUITUR by artificially restricting and bounding its memory requirements [7].

1.4 C++ code to preprocess a (0, 1)-matrix for SEQUITUR

The following code snippet demonstrates how we are preprocessing the (0, 1)-matrix for
processing by SEQUITUR. Currently the matrix consists of a stream of integers consisting
of either 0 or 1. (A future development will be to accept one or more sparse formats)

/ / R o u t i n e t o p r e p r o c e s s m a t r i x f o r g r a m m a t i c a l c o m p r e s s i o n

void c o m p r e s s M at r ix ()
{

u long i , j , x , y , n , p r e v a l , b u f f v a l ;
/ / R e t r i e v e m a t r i x w i d t h a n d h e i g h t

c i n >> x ;
c i n >> y ;
mat . push back (x) ;
mat . push back (y) ;

/ / S e t u n i q u e e n d o f l i n e b u f f e r . S i n c e we a r e u s i n g

/ / u n s i g n e d l o n g s i n a n i n c r e a s i n g d i r e c t i o n ,

/ / d e c r e a s i n g n e g a t i v e n u m b e r s w i l l b e f a i r l y s a f e

b u f f v a l = −1;
/ / I n i t i a l i z e t h e o p e r a t i o n s c o u n t

t o t a l = 0 ;
/ / R e t r i e v e t h e m a t r i x v a l u e s

f o r (i =0 ; i<y ;++ i)
{

f o r (j =0 ; j<x ;++ j)
{

c i n >> n ;
mat . push back (n) ;

/ / H a n d l e t h e c o l u m n p a t t e r n c o n s t r a i n t .

/ / H e r e we j u x t a p o s e t h e c o l u m n p o s i t i o n d a t a w i t h

/ / t h e b o o l e a n d a t a .

n = (j << 1) + n ;

4

/ / A d d t h i s e l e m e n t t o t h e c o m p r e s s e d g r a m m a r .

/ / (SEQUITUR i s c a l l e d a t t h i s p o i n t)

S . l a s t ()−> i n s e r t a f t e r (new symbols (n)) ;

/ / E n s u r e t h a t t h e h i e r a r c h y o n l y g e t s v e r i f i e d a f t e r

/ / t h e f i r s t e n t r y .

i f (i | | j) S . l a s t ()−>prev ()−>check () ;
}

/ / H a n d l e t h e e n d o f r o w p a t t e r n c o n s t r a i n t .

/ / H e r e we i n s e r t a u n i q u e e n d o f r o w m a r k e r t o

/ / e n s u r e p a t t e r n s c a n n o t s p a n r o w s .

S . l a s t ()−> i n s e r t a f t e r (new symbols (b u f f v a l −−));
}

. . .

1.5 Exploiting SEQUITUR and the (0, 1)-Matrix Vector Product

It is doubtful that preprocessing a (0, 1)-Matrix into a grammar can ever compete with
a non-differencing sparse algorithm, or even a naive systolic differencing algorithm, for
a single product with a vector having intrinsic data type elements. However, there are
numerous significant applications wherein a given matrix is multiplied by a
set of vectors e.g. a (0, 1)-Matrix times a general matrix, where each column of the gen-

eral matrix can be considered as a separate vector; (In the context of parallel comput-
ing, this allows for a straightforward partitioning and load-balancing if the complete
grammar is broadcast.)

sequence of vectors e.g. iterative methods: xp ⇐ Apx0 ≡ xp ⇐ Axp−1;

vector with structured elements e.g. very high precision, polynomial, quaternion, ma-
trix, etc. elements, where the cost per operation is relatively high.

In these cases, the expense of the grammar generation can be amortized across the entire
set of calculations, and it should prove competitive in many instances.

1.6 Results

Testing the algorithm with large sets of random matrices exibiting a full range a matrix
sparse densities, we produced the following results which demonstrate the operational sav-
ings of exploiting SEQUITUR for calculating the (0, 1)-matrix vector product. Each ma-
trix was randomly generated of size 50x50, where the probability of each element being
nonzero increased by 5 percent for each 100 element test group. This resulted in 2,100
50x50 matrices being calculated. The resulting comparison of the number of additions
utilized versus the sparse density of the matrices is shown below.

5

 0

 500

 1000

 1500

 2000

 2500

 0 10 20 30 40 50 60 70 80 90 100

N
um

be
r

of
 A

dd
iti

on
s

% of Nonzero Entries

Sequitur
Counting

1.7 Further Developments

Additionally, with little additional development, SEQUITUR could be applied to a more
general matrix for the special case where there is a relatively high multiplicity for some of
the elements. This is common for matrices generated by, e.g. graphics and graph analysis
applications.
Equation (1) has little practical value unless one considers the special case where the
number of distinct αij terms is smaller than the smallest of the two indices. Then all of the
Eij matrices will be added together forming denser (0, 1)-matrices for each set of identical
αij terms. We can then refactor equation (1) as:

A =

k
∑

i=1

βiBi, (9)

Where there are k distinct entries, β1:k, in A, and each Bi represents a distinct (0, 1)-matrix
corresponding to a specific βi. For a discussion of how to scale and translate these problems
to admit efficient solution by means of (0, 1)-matrices, see [1].
At our present stage of development, there are some classes of matrices which SEQUITUR
does not handle optimally – those which require a systematic subtraction of some elements
using the differencing method, e.g, banded matrices.
Additional directions for development:

• Develop an optimization for symmetric matrices.

• Integrate SEQUITUR with a Minimum Spanning Tree algorithm.

6

• Apply SEQUITUR after preprocessing with a graph partitioning algorithm such as
METIS, or other sparse matrix reordering algorithms.

• Investigate the effectiveness of (0, 1)-matrices for pre-conditioning iterative methods.

2 Conclusion

We described an effective method for applying SEQUITUR, which generates a context
free grammar derived from an inherent hierarchy of repeated sequences, to the problem of
reducing the number of operations required by the computation of a (0, 1)-matrix vector
product. A differencing method was described which could be used in conjunction with
SEQUITUR to significantly reduce the number of recomputed sequences thus reducing the
overall number of operations. We then described how (0, 1)-matrix vector products may
be applied to the performance of certain restricted classes of more general matrix vector
products.

7

References

[1] A.A. Anda, A bound on matrix-vector products for (0,1)-matrices via gray codes,
Proceedings of the 37th Midwest Instruction and Computing Symposium (MICS)
(University of Minnesota, Morris), 2004.

[2] C.G. Nevill-Manning, Inferring sequential structure, Ph.D. thesis, University of
Waikato, Hamilton, New Zealand, 1996.

[3] C.G. Nevill-Manning and I.H. Witten, Compression and explanation using hierarchi-
cal grammars, Computer Journal 40 (1997), no. 2/3, 103–116.

[4] , Identifying hierarchical structure in sequences: A linear-time algorithm,
Journal of Artificial Intelligence Research 7 (1997), 67–82.

[5] , Inferring lexical and grammatical structure from sequences, Proc. Compres-
sion and Complexity of Sequences 1997 (Positano) (J. A. Storer and M. Cohn, eds.),
June 1997.

[6] , Linear-time, incremental hierarchy inference for compression, Proc. Data
Compression Conference (Los Alamitos, CA) (J. A. Storer and M. Cohn, eds.), IEEE
Press, 1997, pp. 3–11.

[7] , Phrase hierarchy inference and compression in bounded space, Proc. Data
Compression Conference (Los Alamitos, CA) (J. A. Storer and M. Cohn, eds.), IEEE
Press, 1998, pp. 179–188.

[8] , Online and offline heuristics for inferring hierarchies of repetitions in se-
quences, Proc. Institute of Electrical and Electronic Engineers, vol. 88, November
2000, pp. 1745–1755.

[9] C.G. Nevill-Manning, I.H. Witten, and D.L. Maulsby, Compression by induction of
hierarchical grammars, Proc. Data Compression Conference (Los Alamitos, CA)
(J. A. Storer and M. Cohn, eds.), IEEE Press, 1994, pp. 244–253.

[10] I.H. Witten, Adaptive text mining: Inferring structure from sequences, J. Discrete
Algorithms 2 (2004), no. 2, 137–159.

8

